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1 Introduction

It is important in data analysis to understand the shape that our data takes but as the dimension
increases many statistical methods like linear regression won’t be precise because the shape of our
data is much more complicated and no longer represented by a straight line. So we use topological
data analysis in which the theory underlying it is simplicial homology. Using simplicial homology
to study topological features of our data we won’t have to worry about the coordinates of the data,
we can keep track of noises or features that are insignificant and most importantly we are able to do
this by representing our data in a simpler manner which is called a simplicial complex. Most of this
report will just explain the underlying theory which is simplicial homology instead of describing the
computational methods and how to actually get our data into a simplicial complex representation
since they all basically rely on simplicial homology. So we start by defining simplicial homology
and then in the end briefly describe persistent homology which is a method to see which topological
features are persistent. The article used to learn about the steps in simplicial homology is [3].

2 Simplicial homology

If we have a point cloud and we wish to compute the homology of it in order to study the shape
of the data, this may be a complicated task. We may want to use simiplicial homology since the
underlying objects which are simplicial complexes are combinatorial data. Simplicial homology
provides computational techniques to search for topological features. To use simplicial homology
on our data, we need to find a simplicial complex representation of it with similar homology and this
is part of persistent homology to be discussed in 3. Before getting there, we first define simiplicial
homology.

2.1 Defining simplices and simplicial complexes

A simplex is a generalization of a triangle in higher dimensions. More formally, let k ≥ 0 and
suppose we have k + 1 points v0, v1, . . . , vk ∈ Rm such that v1 − v0, v2 − v0, . . . , vk − v0 are linearly
independent. The convex hull of the points v0, v1, . . . , vk is called a k-simplex, which is the set

σ = {a0v0 + a1v1 + · · ·+ akvk |
k∑

i=0

ai = 1, ai ≥ 0}

We denote the k-simplex as σ = [v0, v1, . . . , vk] and v0, . . . , vk are called the vertices of the simplex.
From this definition, a 0-simplex is a point, 1-simplex a line segment, 2-simplex a filled triangle, 3-
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Figure 1: This is a simplicial 1-complex created by connecting 3 edges

simplex a solid tetrahedron. A k-simplex can be thought of as a k dimensional generalized triangle.
A few properties of simplices are:

1. Given a k-simplex, the convex hull of any of its m + 1 vertices is called an m-face of it. For
example, given σ = [v0, v1, . . . , v10], a 10-simplex, a 4-face of it is [v1, v3, v9, v2, v5]. There
are

(
11
5

)
= 462 4-faces of a 10-simplex. Since v1 − v0, . . . , v10 − v0 are linearly independent

by definition, v3 − v1, v9 − v1, v2 − v1, v5 − v1 are also linearly independent which means
[v1, v3, v9, v2, v5] is a 4-simplex leading to the second property.

2. The m-face is a m-simplex, so the 0-face is a 0-simplex (vertex) and 1-face is a 1-simplex
(edge).

Now we define a simplicial complex. It is a glueing of the simplices we defined above together. This
is useful because we can represent shapes by a glueing of simplices which are most of the time a
homotopically equivalent representation. Then we can apply algebraic calculations on the simplicial
complex to study features of the original shape.

A simplicial complex is a collection K of simplices in Rn such that

1. If σ ∈ K, then every face of σ is in K

2. A non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2

We define the dimension of K to be dim(K) = max{dim(σ) | σ ∈ K} where dim(σ) is the dimension
of the simplex σ. If it is a r-simplex, then it has dimension r.

For example, the simplicial complex given in figure 1 is the collection {[a], [b], [c], [a, b], [b, c], [c, a]}
and it is one dimensional since the highest dimensional simplex are edges.

2.2 Orientation

So far it doesn’t matter in what order we write the vertices within the bracket in the k-simplex
notation. [a, b, c] is the same as [b, c, a] and any other reordering. But in order to properly define the
boundary operator and other things leading to simplicial homology we need to define an orientation
for simplices. We define an orientation of a k-simplex [v0, v1, . . . , vk] for k ≥ 1 to be an equivalence
class of reorderings of the vertices where two reorderings are equivalent if and only if they differ by
an even permutation. Thus, there are exactly two orientations. Reorderings of [v0, v1, . . . , vk] by an
even permutation forms one class and reorderings by odd permutation forms the other class. From
now on, a k-simplex σ is one that is oriented and we denote the simplex with opposite orientation
to be −σ. For example, [a, b, c] = [b, c, a] = [c, a, b] and −[a, b, c] = [b, a, c] = [a, c, b] = [c, b, a]. For
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a 0-simplex [v0], there is only 1 reordering but we still consider it to have an opposite orientation
denoted −[v0]. That is, [v0] is different from −[v0], we need this so that the 0-chain group to be
defined is actually a group (i.e. [v0] has inverse -[v0]).

2.3 Cycle and boundary group

We would like to quantify topologically important features in our data that are basic such as
components and holes but we will do this on the simplicial complex representation of our data
which preserves topological features. So now we will identify cycles and holes in the simplicial
complex. We want the identification to be systematic and algebraic so we will need to define
chains, cycles, boundary group, etc to say exactly what a hole is and count them.

Let K be a simplicial complex. A k-chain is a finite formal sum
∑N

i=1 ciσi where ci ∈ Z and σi ∈ K
is an oriented k-simplex. We also treat σi to be the same as −τi where τi is σi with the opposite
orientation. So we can replace σi with −τi or −σi with τi in the summation whenever we want.
The set of all k-chains is a free abelian group and is denoted Ck. We choose an orientation for each
k-simplex in K and the set of them will be a basis for the free abelian group. There is a 0-chain
group C0 all the way up to a dim(K)-chain group, Cdim(K). For r < 0 or r > dim(K), we have
Cr = 0.

To motivate how to detect holes, in figure 1 the simplicial complex has a hole but to express this
idea we can only use objects that we have which are 1-simplices. Perhaps we can say the 1-chain
[a, b] + [b, c] + [c, a] represents a hole but then we need a computational way to output this 1-chain
without knowing there is a hole in the first place. It turns out we can define a boundary operator
which has a nice property that says the boundary of a boundary is 0. So in the context of figure 1,
the boundary operator applied to the 3 edges with a certain orientation will output 0. Thus we can
just compute the kernel of the boundary operator and those are potential candidates that represent
a hole which are called cycles. Before getting into detail, we define the boundary operator.

Let σ = [v0, v1, . . . , vk] ∈ K be a basis element of Ck which is an oriented k-simplex, the boundary
operator is ∂k : Ck → Ck−1 which is a group homomorphism on the basis elements of Ck defined by

∂k(σ) =
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

and then we extend linearly. v̂i indicates that this vertex should be removed. For k ≤ 0 or
k > dim(K), we define ∂k to be the zero map. ∂k is also a well defined map which means every
ordering of σ in the same orientation is mapped to the same thing. One reason the operator is
defined like this with alternating sign is because we get that ∂k∂k+1 = 0 for all k and this leads to a
way to detect holes by solving kernel of boundary operator but first we show this holds. Using the
definition of boundary operator,

∂k∂k+1([v0, v1, . . . , vk+1]) = ∂k

(
k+1∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk+1]

)
=

k+1∑
i=0

(−1)i∂k[v0, . . . , v̂i, . . . , vk+1]

=
k+1∑
i=0

(−1)i

(
i−1∑
j=0

(−1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vk+1] +
k∑

j=i

(−1)j[v0, . . . , v̂i, . . . , v̂j+1, . . . , vk+1]

)
= 0
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Figure 2:

since the sign of [v0, . . . , v̂a, . . . , v̂b, . . . , vk+1] is (−1)a+b + (−1)a+b−1 = 0.

Now we can formally define a k-cycle group for the simplicial complex K. The kernel of the boundary
map ∂k : Ck → Ck−1 is the k-cycle group of K and is denoted

Zk = ker(∂k) = {x ∈ Ck | ∂k(x) = 0}

An element of Zk is called a k-cycle. The k-cycle group contains k-chains which tell us where
a hole is making it possible to count them. We could have multiple k-cycles representing the
same hole so we want to get rid of this redundant information which will be done by defining
the homology group. It could also be that a k-cycle is not representing a hole because it is the
boundary of higher dimensional simplices but the point is that the k-cycle group will not miss
information on any hole if there are any. For example on the right of figure 2, we have a hole which
we can fill with 2-simplices σ1, σ2, σ3. Taking the boundary of [a, d, b] + [c, b, d] + [d, e, c], we get
[d, b]− [a, b]+ [a, d]+ [b, d]− [c, d]+ [c, b]+ [e, c]− [d, c]+ [d, e] = [b, a]+ [a, d]+ [d, e]+ [e, c]+ [c, b] and
taking boundary again will give 0 since ∂1∂2 = 0. Thus, [b, a] + [a, d] + [d, e] + [e, c] + [c, b] ∈ Z1 and
this is exactly what we want since [b, a] + [a, d] + [d, e] + [e, c] + [c, b] is a 1-cycle which represents
a hole and we can compute it by solving ker(∂1). Solving for ker(∂1) doesn’t use the assumption
that there is a hole as shown in figure 2.

We define the k-boundary group to be the image of the boundary operator ∂k+1 : Ck+1 → Ck which
is denoted

Bk = im(∂k+1) = {∂k+1(x) | x ∈ Ck+1}

An element of Bk is called a k-boundary. If we have a k-cycle and it is also a k-boundary then this
cycle can not represent a hole and we call it a bounded cycle. If the k-cycle is not in the k-boundary
group then this cycle represents a hole and it is called a bounded cycle or k-hole. To summarize
this information we have to define the k-homology group which contains the unique k-holes. Before
getting there, since ∂k∂k+1 = 0 we have Bk is a subgroup of Zk. Also, since Ck is an abelian group
every subgroup is a normal subgroup. So Bk is a normal subgroup of Zk.

2.4 Homology group

For a simplicial complex K, the kth homology group is defined to be the quotient group Zk/Bk and
is denoted Hk. An element of Hk is called a k dimensional homology class of K. The elements of
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Figure 3: a non-bounded 1-cycle z and bounded 1-cycle b with their sum

the quotient group Hk is given by the equivalence classes [z] = z +Bk and the equivalence relation
is z1 ∼ z2 ⇔ z1 − z2 ∈ Bk which is called homology. If z1, z2 ∈ Zk and z1 ∼ z2, then the cycles
are called homologous. So it follows that we have a non-zero k dimensional homology class if and
only if it is represented by a k-cycle which is not a k-boundary. Having non-zero k dimensional
homology classes means we have a hole in the complex.

If we have 2 distinct non-bounded k-cycles and they represent the same hole, then we have redundant
information. However, if non bounded cycles represent the same hole they must differ by a boundary
and by the above equivalence relation they are in the same homology class. So Hk actually contains
the unique k-holes within the complex. To illustrate this, consider figure 3. We have z ∈ Z1, z /∈ B1

and b ∈ B1. When we add them, the shared boundaries cancel out and we get z + b shown by the
figure. Both z+ b and z represent the same hole so they should be in the same homology class. The
homology group formally defines this as both z and z + b are in the homology class [z] = z + B1.
So z and z + b are not independent elements of the homology group H1 which is what we want in
order to not count the same hole multiple times.

2.5 Betti number

The betti number will count the number of unique k-holes using the k-homology group. The k-th
betti number is the rank of Hk which is the cardinality of a maximal linearly independent subset of
Hk. If we have two non bounded cycles z1, z2 with no face in common and z1 + z2 is a non-bounded
cycle we don’t want to count z1 + z2 as a hole since it is the ”union of two disjoint holes”. [z1] and
[2z1] are two distinct homology class representing the same hole so we don’t want to count twice.
Thus we require maximal linearly independent subset of Hk. The k-th betti number βk is given by

βk = rank(Hk) = rank(Zk)− rank(Bk)

Consider the simplicial complex in figure 1. It is the collection of oriented simplices {[a], [b], [c], [a, b], [b, c], [c, a]}.
We have C0

∼= Z3 with basis [a], [b], [c] and C1
∼= Z3 with basis [a, b], [b, c], [c, a]. The other chain

groups are trivial. From the boundary operator ∂1 : C1 → C0, ker(∂1) is obtained by solving
k1([b]− [a]) + k2([c]− [b]) + k3([a]− [c]) = 0 for k1, k2, k3. In which we get the solution to be span
of (1, 1, 1). Thus, ker(∂1) = Z1

∼= Z. Since C2 = 0, we have B1, the boundary group, is the trivial
group. Hence, H1 = Z1/B1

∼= Z. Then it follows that β1 = rank(H1) = 1 which formalizes the idea
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Figure 4:

that there is one 1-hole.

Furthermore, the 0 cycle group Z0 is C0 since C−1 = 0. The 0 boundary group is generated by the
elements [b]− [a], [a]− [c], [c]− [b] which is a 2 dimensional subgroup of C0. Thus, the 0 homology
group is H0 = Z0/B0

∼= Z. The H0 group also measures the number of connected components in the
complex, which in this case we have 1 connected component. There is a path made of 1 simplices
to go from vertex to vertex. The betti number is β0 = rank(H0) = 1 showing that there is one
connected component.

For complicated simplicial complex, usually a simplification is made like defining the k-chain so
that the coefficients are in Z2. This way we can remove the need for defining an orientation.

3 Persistent homology

We have defined simplicial homology groups but we need to get our data into a simplicial complex
representation in order to apply simplicial homology. Because data is usually discrete points we
need to find the connection and continuity between the points. The point cloud doesn’t have a
topological structure at first and we have to define the Čech complex to get an interesting structure
relating the points. As shown in 4, taken from the website by Christian Bock[1], we start with a
point cloud consisting of 16 points. Then define a ball around each point in which the diameter
is described by the parameter t > 0 and we work with euclidean distance. As t increases and 2
balls intersect, a 1-simplex is formed between them. When 3 balls intersect a 2-simplex is formed
between them and so on. By doing this we get a simplicial complex for each value of t. We can also
apply simplicial homology to each value of the parameter. For example, the first diagram which
is just a simplicial complex with vertices has 16 connected components so the 0 homology group
has rank 16 or betti number 16. As betti number is the number of connected components. Then
in the second diagram we have 11 connected components as we start to form 1-simplices. As the
parameter increases the number of connected components decreases. We can also count the number
of 1-holes and how the value changes as we increase the parameter t. For example in the 3rd phase
there is clearly one 1-hole and then it disappears when we increase the parameter. So we obtain
different homology groups and betti numbers as the parameter increases. Doing this we can see how
persistent the topological features are for this space. We also have the values of t for which the hole
first appears and when it disappears since when t is large enough all the balls will intersect leaving
no holes. Using this we know when a feature is noise since a hole that appears and disappears quick
is insignificant to the data. This information is usually described in a persistence diagram.[1][2]
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